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Abstract

Ambient diffusion is a recently proposed framework for training diffusion mod-
els using corrupted data. Both Ambient Diffusion and alternative SURE-based
approaches for learning diffusion models from corrupted data resort to approxima-
tions which deteriorate performance. We present the first framework for training
diffusion models that provably sample from the uncorrupted distribution given
only noisy training data, solving an open problem in this space. Our key technical
contribution is a method that uses a double application of Tweedie’s formula and a
consistency loss function that allows us to extend sampling at noise levels below
the observed data noise. We also provide further evidence that diffusion mod-
els memorize from their training sets by identifying extremely corrupted images
that are almost perfectly reconstructed, raising copyright and privacy concerns.
Our method for training using corrupted samples can be used to mitigate this
problem. We demonstrate this by fine-tuning Stable Diffusion XL to generate
samples from a distribution using only noisy samples. Our framework reduces the
amount of memorization of the fine-tuning dataset, while maintaining competitive
performance.

1 Introduction

In recent years, we have witnessed remarkable progress in image generation as exemplified by
state-of-the-art models such as Stable Diffusion (-XL) [22, 20] and DALL-E (2, 3) [5]. This progress
has been driven by two major enablers: i) the diffusion modeling framework [11, 28, 29]; and ii) the
existence of massive datasets of image-text pairs [23, 9].

The need for high-quality, web-scale data and the intricacies involved in curating datasets at that scale
often result in the inclusion of copyrighted content. Making things worse, diffusion models memorize
training examples more [25, 6] than previous generative modeling approaches, such as Generative
Adversarial Networks [10], often replicating parts or whole images from their training set [6, 25].

A recently proposed strategy for mitigating the memorization issue is to train (or fine-tune) diffusion
models using corrupted data [8, 26]. Indeed, developing a capability for training diffusion models
using corrupted data can also find applications in domains where access to uncorrupted data is
expensive or impossible, e.g. in MRI [1] or black-hole imaging [15, 31]. Unfortunately, existing
methods for learning diffusion models from corrupted data [8, 1, 12, 32] resort to approximations
(during training or sampling) that significantly hurt performance. Our contributions are as follows:

1. We propose the first exact framework for learning diffusion models using only corrupted
samples. Our key technical contributions are: i) a computationally efficient method for
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Figure 1: Top row: images from LAION [23], middle row: masked images, bottom row: reconstructed
images with the SDXL [20] inpainting model. The accuracy of the reconstructions presents strong
evidence that the images on the top-row were in the training set of SDXL (or SDXL Inpainting) and
have been memorized. To the best of our knowledge, SDXL does not disclose its training set.

learning optimal denoisers for all levels of noise σ ≥ σn, where σn is the standard deviation
of the noise in the training data, obtained by applying Tweedie’s formula twice; and ii) a
consistency loss function [7] for learning the optimal denoisers for noise levels σ ≤ σn.
Note that given samples at level of noise σn it is possible to obtain samples at levels of
noise σ > σn (by adding further noise) but prior to our work it was not known how to train
diffusion models to obtain samples at levels of noise σ < σn.

2. We provide further evidence that foundation diffusion models memorize from their training
sets by showing that extremely corrupted training images can be almost perfectly recon-
structed. Moreover, we show that memorization occurs at a higher rate than previously
anticipated.

3. We use our framework to fine-tune diffusion foundation models using corrupted data and
show that the performance of our trained model declines (as the corruption in the training
data increases) at a much slower rate compared to previously proposed approaches.

4. We evaluate our trained models against our as well as a baseline method for testing data
replication and we show that models trained under data corruption memorize significantly
less.

5. We open-source our code to facilitate further research in this area:
https://github.com/giannisdaras/ambient-tweedie.

2 Background and Related Work

Consider a distribution of interest admitting a density function p0. Our goal is to train a diffusion
model that generates samples from p0. However, we only have access to noisy samples from p0. In
particular, we have samples of the form Xtn = X0+σtnZ, where X0 ∼ p0 and Z ∼ N (0, Id). We
denote by ptn the distribution density of these samples. Throughout the paper we fix an increasing
non-negative function σ(t), where t ∈ [0, T ], T > 0, and σ(0) = 0, and denote σ(t) by σt. We take
tn ∈ (0, T ). The subscript ‘n’ in tn refers to “nature” and, as stated above, we assume that nature is
giving us access to samples at noise level σtn . We denote by pt the distribution of random variable
Xt = X0 + σtZ, where X0 ∼ p0 and Z ∼ N (0, Id).
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(a) Images from LAION.

(b) Corresponding latents.

(c) Noisy Latents at level t = 900.

(d) MMSE.

(e) Generated images.

Figure 2: SDXL [20] posterior samples (Row e) given extremely noisy encodings (Row c) of LAION
images (Row a). The level of fidelity of the reconstructions to the original images, despite the severe
corruption (c) and the blurriness of the MMSE solution (d), indicates that the images were potentially
in the training set and have been memorized.

2.1 Background on denoising diffusion models

Denoising diffusion models can equivalently be viewed as denoisers at many different noise levels σt,
t ∈ [0, T ]. They are typically trained with the Denoising Score Matching loss:

JDSM(θ) = Ex0∼p0(x0)Et∼U [0,T ]Ext∼pt(xt|x0)

[
||hθ(xt, t)− x0||2

]
.

If the function class {hθ} is sufficiently rich, the minimizer of this loss satisfies hθ∗(xt, t) =
E[X0|Xt = xt] for all t,xt. Tweedie’s formula connects the conditional expectation, i.e. the best
denoiser in the ℓ22 sense, with the score function ∇ log pt(xt),

∇ log pt(xt) =
E[X0|Xt = xt]− xt

σ2
t

. (2.1)

The score can be then used to sample from p0(x0) [3], by sampling a trajectory from the following
Stochastic Differential Equation (which is the reverse diffusion process of the process that adds
Gaussian noise to a sample from p0 according to the noise schedule σt):

dxt = −2σtdσt∇ log pt(xt) +

√
dσ2

t

dt
dw̄, (2.2)
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initialized at xT ∼ pT (xT ), where w̄ is a standard Wiener process when the time flows backwards
(from T to 0). In practice, the score function is replaced with its estimate, i.e. we run the process:

dxt = −2dσt
hθ(xt, t)− xt

σt
+

√
dσ2

t

dt
dw̄. (2.3)

As we have described, in our setting of interest, we do not have access to samples from p0, thus
we are not in a position to train a diffusion model using Equation 2.1. Yet, we still want to learn
E[X0|Xt = xt] (and thus, the score) for all noise levels t. A natural first question is whether we can
at least learn denoisers for noise levels that are equal to that of the available data or larger, i.e. for
t : σt ≥ σtn .

2.2 Prior Work on learning denoisers from noisy data

Prior work has given an affirmative answer to the question at the end of the previous section. One
of the most established methods is Stein’s Unbiased Risk Estimate (SURE) [30]. SURE learns the
conditional expectation of X0 given a sample Xtn , by minimizing the following objective that only
uses the noisy realizations:

JSURE(θ) = Extn∼ptn

[
||hθ(xtn)− xtn ||

2
+ 2σ2

tn(∇x · hθ(xtn))
2
]
,

The divergence term is expensive to evaluate and is typically replaced with the Monte Carlo approxi-
mation:

(∇x · hθ(xtn))
2 ≈ zT

(
hθ(xtn + ϵz)− hθ(xtn)

ϵ

)
,

for some small, positive parameter ϵ and z ∼ N(0, Id) [2, 24, 16]. An alternative approximation is to
compute the Jacobian Vector Product zT∇hθ(xtn)z, z ∼ N (0, Id), with automatic differentiation
tools [12]. Both methods give unbiased estimators for the divergence term and the variance can be
decreased by averaging over many z (at the cost of increased computation).

Another line of work is the Noise2Noise [14] framework and its generalizations [4, 13, 19, 33, 17].
Most relevant to our work are the Noisier2Noise [17] and Noisy-As-Clean [33] approaches wherein
the training goal is to predict the noisy signal from a further corrupted version of it. Noisier2Noise
comes with the theoretical guarantee of learning E[X0|Xt = xt] for a single t : σt ≥ σtn , where by
“a single t” we mean that, for each t of interest, a new problem needs to be solved.

2.3 Prior work on learning diffusion models from corrupted data

In contrast to the previous section, there is no known approach for learning E[X0|Xt = xt] for noise
levels t : σt ≤ σtn . Thus, it is not known how to train an exact diffusion model using noisy samples,
so various approximations have been considered, as described below.

Aali et al. [1] uses SURE to learn the optimal denoiser at the noise level of the available data, i.e.
E[X0|Xtn = xtn ], and then creates noisy iterates X̃t = E[X0|Xtn ] + σtZ at all noise levels t
to train with Denoising Score Matching. However, the underlying noisy distributions, p̃t(xt), are
different than pt(xt), since the R.V. X0 has been replaced with E[X0|Xtn ]. An alternative approach
is to use SURE to learn E[X0|Xt] for all levels t : σt ≥ σtn and early stop diffusion sampling at
time t : σt = σtn . This type of approach is adopted by Kawar et al. [12] and Xiang et al. [32] and it
only guarantees samples from the distribution E[X0|Xtn ].

Notably, similar problems arise in the setting of training diffusion models from linearly corrupted
data, i.e. when the available samples are Y0 = AX0, for a known matrix A, as considered in the
Ambient Diffusion paper [8]. In this setting, the authors manage to learn E[X0|AXt] for all t, but
not E[X0|Xt], where Xt = X0 + σtZ, as always in this paper. Similar challenges are encountered
in the G-SURE paper [12].

In sum, training exact diffusion models, i.e. diffusion models sampling the target distribution p0, given
corrupted data remains unsolved. In this paper, we resolve this open-problem with two key technical
contributions: i) an efficiently computable objective for learning the optimal denoisers for all levels
of noise t : σt ≥ σtn , obtained by applying Tweedie’s formula twice; and ii) a consistency loss for
learning the optimal denoisers for levels of noise t : σt ≤ σtn . We describe these contributions in the
next section.
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3 Method

3.1 Learning the Optimal Denoiser for σt > σtn

We first present an efficiently computable objective that resembles Denoising Score Matching and
enables learning the optimal denoisers for all noise levels t : σt > σtn .
Theorem 3.1 (Ambient Denoising Score Matching). Define Xt as in the beginning of Section 2.
Suppose we are given samples Xtn = X0 + σtnZ, where X0 ∼ p0 and Z ∼ N (0, I). Consider
the following objective:

J(θ) = Extn
Et∼U(tn,T ]Ext=xtn+

√
σ2
t−σ2

tn
η

[∣∣∣∣∣∣∣∣ (σ2
t − σ2

tn)

σ2
t

(hθ(xt, t)− xt) +
σ2
tn

σ2
t

xt − xtn

∣∣∣∣∣∣∣∣2
]
,

where η in the above is a standard Gaussian vector. Suppose that the family of functions {hθ} is rich
enough to contain the minimizer of the above objective overall functions h(x, t). Then the minimizer
θ∗ of J satisfies:

hθ∗(xt, t) = E[X0|Xt = xt], ∀xt, t > tn. (3.1)

The theorem above states that we can estimate the best l22 denoisers for all noise levels t : σt > σtn
without ever seeing clean data from p0 and using an efficiently computable objective that contains no
divergence term.

Proof Overview. The central idea for this proof is to apply Tweedie’s Formula twice, on appropriate
random variables. We start by stating (a generalized version of) Tweedie’s formula, the proof of
which is given in the Appendix.
Lemma 3.2 (Generalized Tweedie’s Formula). Let:

Xt = αtX0 + σtZ, (3.2)

for X0 ∼ p0, Z ∼ N (0, I), and some positive function αt of t. Then,

∇x log pt(xt) =
αtE[X0|Xt = xt]− xt

σ2
t

. (3.3)

For t : σt > σtn , the R.V. Xt can be written in the following two equivalent ways:{
Xt = X0 + σtZ

Xt = Xtn +
√
σ2
t − σ2

tnZ
. (3.4)

By applying Tweedie’s formula twice, we get two alternative expressions for the same score-function
since the distribution remains the same, irrespectively of how we choose to express Xt. By equating
the two expressions for the score, we arrive at the following result:

E[Xtn |Xt = xt] =
σ2
t − σ2

tn

σ2
t

(E[X0|Xt = xt]− xt) + xt.

We can train a network with denoising score matching to estimate E[Xtn |Xt = xt] and hence we
can use the above equation to obtain E[X0|Xt = xt], as desired.

The method we propose is conceptually similar to Noisier2Noise [17] but instead of adding noise
with a fixed magnitude to create further corrupted iterates, we consider a continuum of noise scales
and we train the model jointly in a Denoising Score Matching fashion.

Finally, we underline that our method can be easily extended to the Variance Preserving (VP) [29]

case, i.e. when the available data are Xtn =
√
1− σ2

tnX0 + σtnZ. This is the setting for our
Stable Diffusion finetuning experiments (see Section 4). For the sake of simplicity, we avoid these
calculations in the main paper and we point the interested reader to the Appendix (see Theorem A.5).
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3.2 Learning the Optimal Denoiser for σt ≤ σtn

Theorem 3.1 allows us to learn the optimal denoisers for t : σt > σtn . However, to perform exact
sampling we need to also learn E[X0|Xt = xt] for t : σt ≤ σtn . We achieve this by training the
network to be consistent.

Definition 3.3 (Consistent Denoiser [7]). Let pθ(xt′ , t
′|xt, t) be the density of the sample Xt′ of the

stochastic diffusion process of Equation 2.3 at time t′ when initialized with xt at time t > t′. The
network hθ(·, t) that drives the process is a consistent denoiser if:

hθ(xt, t) = EXt′∼pθ(xt′ ,t
′|xt,t) [hθ(Xt′ , t

′)] . (3.5)

The concept of consistency was introduced by Daras et al. [7] as a way to reduce error propagation in
diffusion sampling and improve performance. Here, we find a completely different use case: we use
consistency to learn the optimal denoisers for levels below the noise level of the available data. We
are now ready to state our main theorem.

Theorem 3.4 (Main Theorem (informal)). Define Xt as in the beginning of Section 2. Suppose we
are given samples Xtn = X0 + σtnZ, where X0 ∼ p0 and Z ∼ N (0, I). Consider the following
objective:

J(θ) =

Ambient Score Matching︷ ︸︸ ︷
Extn

Et∼U [tn,T ]Ext=xtn+
√

σ2
t−σ2

tn
η

[∣∣∣∣∣∣∣∣ (σ2
t − σ2

tn)

σ2
t

(hθ(xt, t)− xt) +
σ2
tn

σ2
t

xt − xtn

∣∣∣∣∣∣∣∣2
]

+Et∼U(tn,T ],t′∼U(ϵ,t),t′′∼U(t′−ϵ,t′)Ext
Ext′ |xt

[
∣∣∣∣hθ(xt′ , t

′)− Ext′′∼pθ(xt′′ ,t
′′|xt′ ,t

′) [hθ(xt′′ , t
′′)]

∣∣∣∣2 ]︸ ︷︷ ︸
Consistency Loss

,

where η in the above is a standard Gaussian vector. Suppose that the family of functions {hθ} is rich
enough to contain the minimizer of the above objective overall functions h(x, t). Then the minimizer
θ∗ of J satisfies:

hθ∗(xt, t) = E[X0|Xt = xt], ∀xt, t. (3.6)

The formal statement and the proof of this Theorem is given in the Appendix (see Theorem A.6).

Intuition and Proof Overview. It is useful to build some intuition about how this objective works.
There are two terms in the loss: i) the Ambient Score Matching term and ii) the Consistency Loss.
The Ambient Score Matching term regards only noise levels t : σt > σtn . Per Theorem 3.1, this term
has a unique minimizer that is the optimal denoiser for all levels t : σt > σtn . The consistency term
in the loss, penalizes for violations of the Consistency Property (see Definition 3.3) for all pairs of
times t, t′. The desired solution, h(xt, t) = E[X0|Xt = xt], ∀t,xt, minimizes the first term and
makes the second term 0, since it corresponds to a consistent denoiser. Hence, the desired solution
is an optimal solution for the objective we wrote and the question becomes whether this solution
is unique. The uniqueness of the solution arises from the Fokker-Planck PDE that describes the
evolution of density: there is unique extension to a function that is E[X0|Xt = xt], t : σt > σtn and
is consistent for all t. The latter result comes from Theorem 3.2 in Consistent Diffusion Models [7].

Implementation Trade-offs and Design Choices. When it comes to implementing the Consistency
Loss there are trade-offs that need to be considered. First, we need to run partially the sampling
chain. Doing so at every training step can lead to important slow-downs, as explained in Daras et al.
[7]. To mitigate this, we choose the times t′, t′′ to be very close to one another, as in Consistent
Diffusion, using a uniform distribution with support of width ϵ. This helps us run only 1 step of the
sampling chain (without introducing big discretization errors) and it works because local consistency
implies global consistency. Second, for the inner-term in the consistency loss we need to compute an
expectation over samples of pθ. To avoid running the sampling chain many times during training, we
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opt for an unbiased estimator of this term that uses only two samples, following the implementation
of Daras et al. [7]. Specifically, we use the approximation:∣∣∣∣hθ(xt′ , t

′)− Ext′′∼pθ(xt′′ ,t
′′|xt′ ,t

′) [hθ(xt′′ , t
′)]
∣∣∣∣2

≈ (hθ(x
1
t′′ , t

′′)− hθ(xt′ , t
′))T (hθ(x

2
t′′ , t

′′)− hθ(xt′ , t
′′)),

where x1
t′′ ,x

2
t′′ are samples from pθ(·|x′

t, t
′).

3.3 Testing Training Data Replication

Learning from corrupted data is a potential mitigation strategy for the problem of training data
replication. Thus, we need effective ways to evaluate the degree to which our models (and baselines
trained on clean data) memorize.

A standard approach is to generate a few thousand samples with the trained models (potentially using
the dataset prompts) and then measure the similarities of the generated samples with their nearest
neighbors in the dataset [25, 8]. This approach is known to “systematically underestimate the amount
of replication in Stable Diffusion and other models”, as noted by Somepalli et al. [25].

We propose a novel attack that shows that diffusion models memorize their training sets at a higher
rate than previously known. We use the trained diffusion priors to solve inverse problems at extremely
high corruption levels and we show that the reconstructions are often almost perfect.

4 Experimental Evaluation

4.1 Experiments with pre-trained models

In this section, we measure how much pre-trained foundation diffusion models memorize data from
their training set. We perform our experiments with Stable Diffusion XL [20] (SDXL), as it is the
state-of-the-art open-source image generation diffusion model.

We take a random 10, 000 image subset of LAION and we corrupt it severely. We consider two
models of corruption. In the first model, we take the LAION images and mask significant portions of
them, as shown in Figure 1. The masked regions are selected automatically, using a YOLO object
detection network [21], to contain whole faces or large objects that are impossible to perfectly predict
by only observing the non-masked content of the image. Yet, as seen in the last row of Figure 1, some
posterior samples are almost pixel-perfect matches of the original images. This strongly indicates that
the images in the top row of Figure 1 were in the training set of SDXL and have been memorized. It
is important to note that the captions (from the LAION dataset) are entered as input in the inpainting
model and this attack did not seem to work with null captions.

In the second corruption model, we encode LAION images with the SDXL encoder and we add
a significant amount of noise to them. In Figure 2, we show images from LAION dataset, their
encodings (visualizing them as 3-channel RGB images), the noisy latents, the MMSE reconstruction
(using the model’s one-step prediction at the noise level of the corruption) and posterior samples
from the model. Again, even if the corruption is severe and the MMSE denoised images are very
blurry, the posterior samples from the model are very close to the original images from the dataset,
indicating potential memorization. In this corruption model the near-duplicate reconstructed images
were obtained with null captions, so no text guidance was needed.

To quantify the degree of memorization and detect replication automatically, we adapt the method-
ology of Somepalli et al. [25]. In this work, the authors embed both the generated images and the
dataset images to the DINOv2 [18] latent space, and for each generated image compute its maximum
inner product (similarity score) with its nearest neighbor in the dataset. We repeat this experiment,
previously done for Stable Diffusion v1.4, for the latest SDXL model. We empirically find that
similarities above 0.95 correspond to almost identical samples to the ones in the training set and
similarities above 0.9 correspond to close matches. We compare the distribution obtained using
the Somepalli et al. [25] method with the distribution obtained using our noising approach (for two
different noise levels) in Figure 3. As shown, our approach finds significantly more examples that
have similarity values close to 1. Also as mentioned, our attack did not need the prompts in this
case. This is not necessarily surprising since our approach uses more information (the noisy latents)
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Figure 3: Distribution of image similarities of generated images with their nearest neighbors in the
dataset for: i) the Somepalli et al. [25] method, and ii) for our noising method for two different noise
levels. As shown, the fraction of images with similarities above 0.95 (near-identical to training set) is
much higher for our method compared to the Somepalli et al. [25] baseline.

compared to the previously proposed method that only uses the prompts. Still, our results present
evidence that diffusion models memorize significantly more training data compared to what was
previously known. For the inpainting case, we only compute embeddings for the infilled regions and
hence the similarity numbers are not directly comparable. We present these results in Figure 9 in the
Appendix.
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FID for SDXL Finetuned Models on FFHQ.
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Figure 4: FID results for SDXL finetuned models, with and without consistency, on FFHQ, as we
change the corruption level. The performance of models trained without consistency deteriorates
significantly as we increase the corruption. Models trained with consistency maintain comparable
performance to the baseline model (trained on clean data) for noise levels up to tn = 500.

4.2 Finetuning Stable Diffusion XL

The next step is to use our framework, detailed in Sections 3.1, 3.2, to finetune SDXL on corrupted
data. We finetune our models on FFHQ, at 1024× 1024 resolution, since it is a standard benchmark
for image generation. Given that SDXL is a latent model, we first encode the clean images using
the SDXL encoder and then we add noise to the latents. We consider four noise levels which we
will be referring to as: i) noiseless, tn = 0, σtn = 0, ii) low-noise, tn = 100, σtn = 0.325, iii)
medium-noise, tn = 500, σtn = 0.850, and, iv) high-noise, tn = 800, σtn = 0.981. For reference,
we fix an image from the training set and we visualize posterior samples for each one of the noise
levels in Figure 5. We train models with our Ambient Denoising Score Matching loss, with and
without consistency. We provide the training details in the Appendix, Section B.

We first evaluate the denoising performance of our models. To do so, we take 32 evaluation samples
from FFHQ, we add noise to levels teval ∈ {900, 800, 500, 100}, we use our trained models to
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Noise Level Eval Noise Level Training Latent MSE Pixel MSE

900
100 0.3369 (0.0521) 0.0802 (0.0257)
500 0.3377 (0.0514) 0.0804 (0.0253)
800 0.3375 (0.0514) 0.0796 (0.0254)

800
100 0.2974 (0.0463) 0.0566 (0.0219)
500 0.2978 (0.0464) 0.0566 (0.0222)
800 0.3001 (0.0466) 0.0570 (0.0220)

500
100 0.2153 (0.0283) 0.0219 (0.0092)
500 0.2159 (0.0283) 0.0221 (0.0092)
800 0.2182 (0.0284) 0.0226 (0.0094)

100
100 0.0405 (0.0029) 0.0068 (0.0027)
500 0.0409 (0.0029) 0.0069 (0.0028)
800 0.0411 (0.0029) 0.0070 (0.0028)

Table 1: Restoration performance of models trained with noisy data at different noise levels. All the
models have comparable performance, irrespective of the noise level of the dataset they were trained
with.

(a) Noisy Latents for tn ∈ {0, 100, 500, 800}.

(b) Posterior samples for tn ∈ {0, 100, 500, 800}.

Figure 5: Visualization of the noise levels considered in the paper. The top row shows noisy latents,
visualized as RGB images. The bottom row shows posterior samples obtained by the SDXL [20]
model given these noise latents.

denoise and we measure the reconstruction error. Since SDXL is a latent diffusion model, the noise
(and the denoising) happens in the latent space. Hence, the MSE reconstruction error can be measured
directly in the latent space or pixel space (by decoding the reconstructed latents). We present our
results in Table 1. As shown, all the models have comparable performance across all noise levels,
irrespective of the noise level of the data they saw during training. This is in line with our theory: all
the models are trained to estimate E[x0|xt] for all levels t.

To understand better the role of consistency, we visualize unconditional samples from our models
trained with and without consistency in Figure 6. As shown in the left column of Figure 6, models
trained without consistency lead to increasingly blurry generations as the level of noise encountered
during training increases. This is not surprising: as explained in Subsection 2.3, models trained
without consistency sample from the distribution of MMSE denoised images, E[X0|Xtn ]. As
the noise level tn increases, these images become averaged and high-frequency detail is lost. As
shown in the right column on Figure 6, training with consistency recovers high-frequency details
and leads to significantly improved images, especially for models trained with highly noisy data
(tn ∈ {500, 800}).

We proceed to evaluate unconditional generation performance. For each of our models, we generate
50, 000 images and we compute the FID score. We visualize the performance of our models trained
with and without consistency in Figure 4. As shown, the performance of models trained without
consistency deteriorates significantly as we increase the corruption. This is compatible with Figure 6
(left) that shows that the generations become blurrier. Models trained on noisy data with consistency
maintain comparable performance to the baseline model (trained on clean data) for noise levels up to
tn = 500 and are better everywhere compared to their counterparts trained without consistency.
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(a) tn = 0.

(b) tn = 100, no consistency. (c) tn = 100, with consistency.

(d) tn = 500, no consistency. (e) tn = 500, with consistency.

(f) tn = 800, no consistency. (g) tn = 800, with consistency.

Figure 6: Unconditional generations for models trained with and without consistency at various noise
levels tn. Models trained without consistency lead to increasingly blurry generations as the noise
level of the training data increases. Training with consistency recovers high-frequency details and
leads to significantly improved images, especially for models trained on highly noisy data.

4.3 Additional Finetuning Experiments

We perform additional experiments to show that our framework can be used to fine-tune SDXL on
datasets beyond FFHQ. We finetune SDXL on a 10k subset of LAION at different levels of noise in
the training data and we show generations for different textual prompts at Figure 7. As shown, even
for high levels of training corruption, the model is still capable of generating plausible images for
arbitrary user prompts.

To further show that our method can be used for data that follow a distribution significantly different
to the training distribution, we finetune SDXL on medical images. Specifically, we train the model
on a dataset of MRIs of brain tumors and a dataset of chest x-rays. In Figure 11 of the Appendix, we
provide same samples of the training dataset (Row 1), generated samples without fine-tuning (Row
2), noisy samples that were used to fine-tune the model (Row 3), generated samples after fine-tuning
without consistency (Row 4) and finally generated samples after fine-tuning with consistency. For
all our generations, we use prompts from the dataset of interest. The generations of the model
without fine-tuning are very different compared to the dataset samples, hinting that the model initially
models a different distribution conditioned on the given prompt. After fine-tuning with noisy data,
the generated samples are more closely related to the samples from the dataset. As we also observed
in the rest of the experiments in this paper, consistency decreases the blurriness of the generated
samples.

4.4 Measuring Memorization of Finetuned Models

The final step in our experimental evaluation is to investigate to what extent training with noisy data
reduced the rate of training data replication. To do so, we use the method we proposed in Section
4.1. Specifically, we get the FFHQ training images, we encode them to the latent space of the SDXL
Encoder and we add noise to them that corresponds to tn = 900. We then use the model trained
with clean images and the model trained with data at tn = 500 noise level to perform posterior
sampling, given the noisy latents. For each generated sample, we measure its DINO similarity to
the nearest neighbor in the dataset. We plot the resulting distributions for the model trained with
clean data and the tn = 500 model in Figure 8. As shown, the model trained with clean data (blue
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(a) Finetuned model, no noise. (b) Finetuned model, tn = 100. (c) Finetuned model, tn = 500.

Figure 7: Generations of finetuned SDXL models on a 10k subset of LAION at different levels of
noise in the training data. The following prompts were used: Row 1) “A propaganda poster depicting
a cat dressed as french emperor napoleon.”, Row 2) “A high-quality image of a dog.”, Row 3) “Panda
mad scientist mixing sparkling chemicals, artstation.”, Row 4) “A robot painted as graffiti on a brick
wall.”.

curve), has a distribution of similarity values that is more shifted to the right, indicating higher dataset
memorization compared to the model trained with corrupted data (orange curve). Finally, we once
again compare with the method of Somepalli et al. [25] for identifying training data replications. We
use the model trained with clean data, we take the 50, 000 images that we used for FID generation and
we compute their similarity to their nearest neighbor in the dataset. We compare with our approach in
Figure 10 in the Appendix.
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Figure 8: Distribution of similarities of posterior samples to their nearest neighbor in the dataset,
given noisy latents (at t = 900) for two models. The model trained with clean data (blue curve),
has a distribution of similarity values that is more shifted to the right, indicating higher dataset
memorization compared to the model trained with corrupted data (orange curve).

5 Conclusions, Limitations and Future Work

We presented the first exact framework for training diffusion models to sample from an uncorrupted
distribution using access to noisy data. We used our framework to finetune SDXL and we showed that
training with corrupted data reduces memorization of the training set, while maintaining competitive
performance. Our method has several limitations. First, it does not solve the problem of training
diffusion models with linearly corrupted data that provably sample from the uncorrupted distribution.
Second, training with consistency increases the training time [7]. Finally, in some preliminary
experiments on very limited datasets (< 100 samples), the proposed Ambient Denoising Score
Matching objective did not work. We plan to explore all these exciting open directions in future work.
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A Theoretical Results

In this section, we provide the proofs for the theoretical results of the main paper.

A.1 Preliminaries

We start by stating and proving a generalized version of Tweedie’s formula that will be useful for
learning the optimal denoisers, given only noisy data at σtn , for noise levels higher than the level of
the noise in the data, i.e. for σt ≥ σtn .
Lemma A.1 (Generalized Tweedie’s Formula). Let:

Xt = αtX0 + σtZ, (A.1)

for X0 ∼ p0 and Z ∼ N (0, I). Then,

∇xt
log pt(xt) =

αtE[X0|xt]− xt

σ2
t

. (A.2)

Proof.

∇xt
log pt(xt) =

1

pt(xt)
∇xt

pt(xt) =
1

pt(xt)
∇xt

∫
pt(xt,x0)dx0 (A.3)

=
1

pt(xt)
∇xt

∫
pt(xt|x0)p0(x0)dx0 (A.4)

=
1

pt(xt)

∫
∇xt

pt(xt|x0)p0(x0)dx0 (A.5)

=
1

pt(xt)

∫
pt(xt|x0)∇xt

log pt(xt|x0)p0(x0)dx0 (A.6)

=

∫
p0(x0|xt)

αtx0 − xt

σ2
t

dx0 (A.7)

=
αtE[X0|xt]− xt

σ2
t

. (A.8)

A.2 Learning the Optimal Denoisers for σt ≥ σtn

We will now use Lemma 3.2 to connect the conditional expectation of X0 given Xt, E[X0|Xt], to
the conditional expectation of Xtn given Xt, E[Xtn |Xt], for t : σt ≥ σtn . The latter can be learned
with supervised learning and hence this connection will give us a way to learn how to find the best
denoised image at level t = 0 given only access to data at tn.
Lemma A.2 (Connecting Conditional Expectations – Variance Exploding). Let Xtn = X0 + σtnZ1

and Xt = X0 + σtZ2, Z1,Z2 ∼ N (0, I) i.i.d. Then, for any σt > σtn , we have that:

E[X0|Xt = xt] =
σ2
t

σ2
t − σ2

tn

E[Xtn |Xt = xt]−
σ2
tn

σ2
t − σ2

tn

xt + xt. (A.9)

Proof. Applying Tweedie’s formula (Lemma 3.2) for the pair Xt,X0 we have:

∇ log pt(xt) =
E[X0|xt]− xt

σ2
t

. (A.10)

But also, Xt = Xtn +
√
σ2
t − σ2

tnZ. Applying again Tweedie’s formula for Xt,Xtn we get:

∇ log pt(xt) =
E[Xtn |xt]− xt

σ2
t − σ2

tn

. (A.11)
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From A.10, A.11, we get:

E[X0|Xt = xt] =
σ2
t

σ2
t − σ2

tn

E[Xtn |Xt = xt]−
σ2
tn

σ2
t − σ2

tn

xt + xt. (A.12)

We are now ready to present the proof of Theorem 3.1. For completeness, we restate the theorem
here.
Theorem A.3 (Ambient Denoising Score Matching; restated Theorem 3.1). Define Xt as in the
beginning of Section 2. Suppose we are given samples Xtn = X0 + σtnZ, where X0 ∼ p0 and
Z ∼ N (0, I). Consider the following objective:

J(θ) = Extn
Et∼U(tn,T ]Ext=xtn+

√
σ2
t−σ2

tn
η

[∣∣∣∣∣∣∣∣ (σ2
t − σ2

tn)

σ2
t

(hθ(xt, t)− xt) +
σ2
tn

σ2
t

xt − xtn

∣∣∣∣∣∣∣∣2
]
,

where η in the above is a standard Gaussian vector. Suppose that the family of functions {hθ} is rich
enough to contain the minimizer of the above objective overall functions h(x, t). Then the minimizer
θ∗ of J satisfies:

hθ∗(xt, t) = E[X0|Xt = xt], ∀xt, t > tn. (A.13)

Proof. We start by using the definition of conditional expectation as the unique minimizer of the
mean squared error objective. Specifically, we know that the solution to the optimization problem:

J̃(θ) = Extn
Et∼U(tn,T ]Ext=xtn+

√
σ2
t−σ2

tn
η

[
||gθ(xt, t)− xtn ||

2
]
, (A.14)

for a rich enough family of functions gθ is gθ∗(xt, t) = E[Xtn |Xt = xt]. We can parametrize gθ as

gθ(xt, t) =
σ2
t−σ2

tn

σ2
t

(hθ(xt, t)− xt) +
σ2
tn

σ2
t
xt and solve the following optimization problem:

min
θ:gθ(xt,t)=

σ2
t −σ2

tn
σ2
t

(hθ(xt,t)−xt)+
σ2
tn
σ2
t

xt

Extn
Et∼U(tn,T ]Ext=xtn+

√
σ2
t−σ2

tn
η

[
||gθ(xt, t)− xtn ||

2
]
,

(A.15)

which will have the same minimizer since any solution of J̃(θ) remains feasible. Hence,

gθ∗(xt, t) = E[Xtn |Xt = xt] ⇐⇒ (A.16)

σ2
t − σ2

tn

σ2
t

(hθ∗(xt, t)− xt) +
σ2
tn

σ2
t

xt = E[Xtn |Xt = xt]. (A.17)

Using Lemma A.2, the latter implies that hθ∗(xt, t) = E[x0|Xt = xt], as needed.

A.3 Extensions to Variance Preserving Diffusion

The results that we presented can be easily extended to the Variance Preserving [29] case, where the
observed data are:

Xtn =
√
1− σ2

tnX0 + σtnZ, 0 < σtn < 1. (A.18)

We first extend Lemma A.2.
Lemma A.4 (Connecting Conditional Expectations – Variance Preserving). Let Xtn =√
1− σ2

tnX0 + σtnZ1, 0 < σtn < 1, and Xt =
√
1− σ2

tX0 + σtZ2, Z1,Z2 ∼ N (0, I)

i.i.d. Then, for any 1 > σt > σtn , we have that:

E[x0|Xt = xt] =
σ2
t

σ2
t − σ2

tn

√
1− σ2

tnE[xtn |Xt = xt]− σ2
tn

√
1− σ2

t

σ2
t − σ2

tn

xt. (A.19)
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Proof. Applying Tweedie’s formula (Lemma 3.2) for the pair Xt,X0 we have:

∇ log pt(xt) =

√
1− σ2

tE[X0|xt]− xt

σ2
t

. (A.20)

The next step is to express Xt as a function of Xtn . We want to find co-efficients α, β such that:

Xt = αXtn + βZ2 ⇐⇒ (A.21)

Xt = α
√
1− σ2

tnX0 + ασtnZ1 + βZ2 ⇐⇒ (A.22)

Xt = α
√
1− σ2

tnX0 +
√
α2σ2

tn + β2Z. (A.23)

Since Xt =
√
1− σ2

tX0 + σtZ, this implies that the values of the desired co-efficients are:

α =

√
1− σ2

t

1− σ2
tn

, β =

√
σ2
t − σ2

tn

1− σ2
tn

, (A.24)

i.e. Xt can be expressed as:

Xt =

√
1− σ2

t

1− σ2
tn

Xtn +

√
σ2
t − σ2

tn

1− σ2
tn

Z2. (A.25)

By applying Tweedie’s formula again for the Xt,Xtn pair, we get that:

∇ log pt(xt) =

√
1−σ2

t

1−σ2
tn

E[Xtn |Xt = xt]− xt

σ2
t−σ2

tn

1−σ2
tn

⇐⇒ (A.26)

∇ log pt(xt) =

√
(1− σ2

t )(1− σ2
tn)E[Xtn |Xt = xt]− (1− σ2

tn)xt

σ2
t − σ2

tn

. (A.27)

Finally, by equating A.20, A.27, we find that:

E[x0|Xt = xt] =
σ2
t

σ2
t − σ2

tn

√
1− σ2

tnE[xtn |Xt = xt]− σ2
tn

√
1− σ2

t

σ2
t − σ2

tn

xt. (A.28)

We can now use this result to write an objective for the VP case that learns E[X0|Xt],∀ t : σt > σtn ,
as in Theorem 3.1.

Theorem A.5 (Ambient Denoising Score Matching – VP case). Let Xtn =
√
1− σ2

tnX0 +

σtnZ, Z ∼ N (0, I) and Xt =
√
1− σ2

tX0 + σtZ, t : 1 > σt > σtn > 0. Then, the
unique minimizer of the objective:

J(θ) = Extn
Et∼U(tn,T ]Ext|xtn


∣∣∣∣∣∣
∣∣∣∣∣∣ σ2

t − σ2
tn

σ2
t

√
1− σ2

tn

hθ(xt, t) +
σ2
tn

σ2
t

√
1− σ2

t

1− σ2
tn

xt − xtn

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(A.29)

is:

hθ∗(xt, t) = E[x0|Xt = xt], ∀t : 1 > σt > σtn . (A.30)

The proof of this Theorem is skipped for brevity since it follows the same steps as the proof of
Theorem 3.1, with the only difference being that it invokes Lemma A.4 instead of Lemma A.2.
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A.4 Learning the Optimal Denoisers for σt ≤ σtn

We are now ready to present the theory for learning the optimal denoisers for σt ≤ σtn . The formal
version of our main Theorem (3.4) is given below.

Theorem A.6 (Main Theorem). Define Xt as in the beginning of Section 2. Suppose we are given
samples Xtn = X0 + σtnZ, where X0 ∼ p0 and Z ∼ N (0, I). Let also pθ(xt′ , t

′|xt, t) be the
density of the sample Xt′ sampled by the stochastic diffusion process of Equation 2.3, at time t′ when
initialized with xt at time t > t′. Consider the following objective:

J(θ) =

Ambient Score Matching︷ ︸︸ ︷
Extn

Et∼U(tn,T ]Ext=xtn+
√

σ2
t−σ2

tn
η

[∣∣∣∣∣∣∣∣ (σ2
t − σ2

tn)

σ2
t

(hθ(xt, t)− xt) +
σ2
tn

σ2
t

xt − xtn

∣∣∣∣∣∣∣∣2
]

+Et∼U(tn,T ],t′∼U(0,t),t′′∼U [t′−ϵ,t′)Ext
Ext′∼pθ(xt′ ,t

′|xt,t)

[∣∣∣∣hθ(xt′ , t
′)− Ext′′∼pθ(xt′′ ,t

′′|xt′ ,t
′) [hθ(xt′′ , t

′′)]
∣∣∣∣2]︸ ︷︷ ︸

Consistency Loss

,

(A.31)

where η in the above is a standard Gaussian vector, and subject to:{
(A1): hθ(x0, 0) = x0,∀x0;

(A2): hθ(xt,t)−xt

σ2
t

= ∇Φ(xt), for some scalar-valued function Φ, ∀t,xt.
(A.32)

Suppose that the family of functions {hθ} is rich enough to contain the minimizer of the above
objective overall functions h(x, t). Then the minimizer θ∗ of J satisfies:

hθ∗(xt, t) = E[X0|Xt = xt], ∀xt, t. (A.33)

Proof. The first term of the loss involves predictions of the network only for t : σt > σtn . By
Theorem 3.1, for these times t, there is a unique minimizer and the solution should satisfy:

hθ∗(xt, t) = E[X0|Xt = xt], ∀t : σt > σtn . (A.34)

The solution:

hθ∗(xt, t) = E[X0|Xt = xt], ∀t, (A.35)

is one minimizer of the loss since: i) it is a feasible solution (satisfies (A1), (A2)), ii) it satisfies the
condition of Equation A.34 that corresponds to the minimization of the first term, and iii) it makes
the second term of the loss 0 (by the tower law of expectation). Hence, the only thing left to show is
that the solution is unique for times t : σt ≤ σtn .

Let hθ̃ be another optimal solution. It has to satisfy the following properties:

1. hθ̃ needs to make the second term in the loss 0, i.e. hθ̃ is a consistent denoiser (see Definition
3.3) for all t. This is because we found another minimizer that minimizes the first term of
the loss and makes the second term 0.

2. hθ̃ satisfies (A1), (A2) since the optimal solution should be a feasible solution.

3. hθ̃ needs to satisfy Eq. A.34, since the first term in the loss has a unique minimizer.

By Theorem 3.2 (part ii) of Consistent Diffusion Models [7], the only function that satisfies properties
1., 2., 3. is the function hθ∗ and hence the solution is unique.
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B Experimental Details

In this section, we provide further regarding the SDXL finetuning experiments. We train all our
models with a batch size of 16 using a constant learning rate 1e−5. For all our experiments, we use the
Adam optimizer with the following hyperparameters: β1 = 0.9, β2 = 0.999,weight decay = 0.01.
We train all of our models for at least 200, 000 steps or roughly 45 epochs on FFHQ. The models
trained with consistency were finetuned for 50, 000 steps, initialized from the models trained without
consistency after 150, 000 steps. We did this to save computation time since training with consistency
loss takes ≈ 3× more time compared to vanilla training. During finetuning, we used a weight of 0.01
for the consistency loss for the tn ∈ {100, 500} models and a weight of 1e − 4 for our tn = 800
model. We noticed that further increasing the weight for the latter led to training collapse.

For our finetuning, we use LoRA with rank 4, following the implementation of SDXL finetuning
from the diffusers Github repository. We train all of our models on 16-bit precision to reduce the
memory requirements and accelerate training speed. For all the experiments in the paper (including
FID evaluation) the images were generated using 25 inference steps and the DDIM [27] sampling
algorithm. We underline that better performance could have been achieved by increasing the number
of steps, the training and sampling precision and by carefully tuning the batch size. However, in this
paper, we did not optimize for state-of-the-art unconditional generation performance but rather we
focused on building a complete and exact framework for learning diffusion models from noisy data.

C Additional Results

In this section, we provide additional results that were not included in the main paper. Figure 9
shows the memorization curves for the SDXL inpainting experiment (see also Figure 1). Figure 10
compares the Somepalli et al. [25] method for detecting training data replication with our proposed
method that works by denoising extremely corrupted encodings of dataset images. We once again
underline that it is not surprising that our method indicates higher memorization since it has access to
more information (the noisy latents).
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Figure 9: Distribution of image similarities of generated images with their nearest neighbors in the
dataset for inpainting attack.
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Figure 10: Comparison of [25] method for detecting training data replication with our proposed
method that works by denoising extremely noisy dataset latents. The comparison is given for an
SDXL model finetuned on clean FFHQ images. Our method (orange curve) gives a distribution that
is more shifted to the right, indicating higher dataset memorization. This is not surprising since we
have access to more information (noisy latents) compared to the baseline method.

Figure 11: SDXL Finetuning on medical datasets. Row 1: samples of the training dataset, Row 2:
generated samples without fine-tuning, Row 3: noisy samples that were used to fine-tune the model,
Row 4: generated samples after fine-tuning without consistency, and, Row 5: generated samples after
fine-tuning with consistency.
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